The Thermal Anisotropy of 1.3.5-Trichlorobenzene and of 1.3.5-Tribromobenzene

By Kathleen Lonsdale and H. Judith Milledge
Department of Chemistry, University College, London W. C. 1, England

(Received 22 October 1959)

Abstract

The anisotropic Debye factors for symm. $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$ (at $293{ }^{\circ} \mathrm{K}$. and $90^{\circ} \mathrm{K}$.) and for symm. $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}$ (at $293^{\circ} \mathrm{K}$.) are analysed in respect of rigid-body and internal vibrations. The accuracy of the data are insufficient to give reliable information about the carbon or bromine non-rigid-body movements, but the three chlorine atoms are not equivalent either in respect of thermal vibrations or of intermolecular bonding.

Introduction

Elsewhere we discuss (Lonsdale, Milledge \& Rao, 1960) a simple method of determining the amplitudes of rigid-body translational and librational vibrations of molecules in crystals and of distortional vibrations of the individual atoms. This can be done by an analysis of the anisotropic Debye factors in different directions in the molecule, the simplifying assumption being made that the vibrations are phase-independent. The results will be misleading unless the experimental data are free from systematic errors and are reliable to better than 10%. Indeed it is true that the errors will nearly all be concentrated in the deduced intramolecular amplitudes; yet the results so far obtained (Lonsdale \& Milledge, 1959) seem to be well outside the limits of experimental error and to be supported both by the reasonableness of the proper molecular vibrations indicated and by the parallelism of the results found at room temperatures and (scaled down, of course) at liquid-nitrogen temperatures.

In the course of a comparative study of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{B}-\mathrm{N}$ bonds we have investigated the structures of 1.3.5-trichlorobenzene (at $293{ }^{\circ} \mathrm{K}$. and $90^{\circ} \mathrm{K}$.), (m.p. $63{ }^{\circ} \mathrm{C}$.) ; 1.3.5-tribromobenzene (m.p. $120^{\circ} \mathrm{C}$.) (Milledge \& Pant, 1960), and BBB-trichloroborazole (m.p. 84° C.) (Coursen \& Hoard, 1952 ; Lonsdale \& Milledge, 1959). The latter, although not isomorphous with the benzene compounds, is very similar in structure. The charge distribution in the borazole molecule appears, however, to be different (Lonsdale, 1959) and the diamagnetic anisotropy is much less than that of the benzene compounds (Lonsdale \& Toor, 1959). A comparison of their molecular thermal vibrations is likely to be of great interest. In the case of symm. $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$ and $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}$, however, accuracy of the experimental F values is only about 8%, and there are not many reflexions observed other than in the $\{h k 0\}$ zone. On the other hand, data are available at two temperatures for the Cl derivative and the further possibility of comparison with the Br derivative makes an analysis worth while.

Analysis of the Debye factors

In Table VII of Milledge \& Pant (1960) values of the Debye factors are given for each atom for the radial (\mathbf{R}), tangential (\mathbf{T}) and normal (\mathbf{N}) directions relative to the molecular plane. The standard deviations for the carbon atom B-values are so large for the N -direction in $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$ and for all directions in $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}$ that they are not worth further consideration. We are left with the values given here in Tables 1 and 2.

In these structures $X_{1}-X_{3}(X=\mathrm{Cl}, \mathrm{Br})$ is nearly parallel to the b-axis, and the molecule is tilted by about 27° out of the (001) plane. If p is the average $\mathrm{C}-\mathrm{C}$ distance and q the average $\mathrm{C}-X$ distance, we shall take p as $1.40, q$ as 1.70 for $\mathrm{C}-\mathrm{Cl}, 1.86$ for $\mathrm{C}-\mathrm{Br}$ (Milledge \& Pant, 1960). Hence $p^{2}=1 \cdot 96 \AA^{2},(p+q)^{2}=$ $9 \cdot 61,10 \cdot 63 \AA^{2}$ respectively.

Fig. 1. Directions of $\mathbf{L}, \mathbf{M}, \mathbf{N}$ relative to the molecule.

Assuming phase-independence of the various molecular vibrations, we use Higgs' (1955) formula

$$
\overline{u_{x}^{2}}=\Sigma u_{x}^{2}(\text { rigid-body })+\Sigma u_{x}^{2}(\text { internal })
$$

Table 1
B_{x}-values and corresponding $\overline{u_{x}^{2}} \sim B_{x} / 8 \pi^{2}$ for symm. $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$ at $90^{\circ} \mathrm{K}$. and $293{ }^{\circ} \mathrm{K}$., with standard deviations (using James-Brindley f-curves for Cl) for the last round of refinement. (All in \AA^{2})

	$1.3 .5 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}\left(90^{\circ} \mathrm{K}.\right)$				$\left(293{ }^{\circ} \mathrm{K}.\right)$			
Atom and direction	B_{x}	σ_{x}	u_{x}^{2}	$\sigma\left(\overline{u_{x}^{2}}\right)$	B_{x}	σ_{x}	$\overline{u_{x}^{2}}$	$\sigma\left(\overline{u_{x}^{2}}\right)$
$\mathrm{Cl}_{1}(R)$	$0 \cdot 89$	$0 \cdot 12$	0.0113	0.0015	$2 \cdot 80$	$0 \cdot 16$	0.0354	0.0020
$\mathrm{Cl}_{3}(R)$	$0 \cdot 83$	$0 \cdot 13$	0.0105	0.0016	$2 \cdot 84$	$0 \cdot 17$	0.0359	0.0021
$\mathrm{Cl}_{5}(R)$	$0 \cdot 42$	$0 \cdot 13$	0.0053	0.0016	$2 \cdot 08$	$0 \cdot 19$	0.0263	0.0024
$\mathrm{C}_{1}(R)$	$1 \cdot 36$	0.50	0.0172	0.0063	$4 \cdot 2$	$0 \cdot 79$	0.053	0.010
$\mathrm{C}_{3}(R)$	1-88	0.52	0.0238	0.0065	$3 \cdot 6$	0.74	0.046	0.009
$\mathrm{C}_{5}(R)$	$1 \cdot 00$	$0 \cdot 42$	0.0127	0.0053	$3 \cdot 0$	$0 \cdot 76$	0.038	$0 \cdot 009$
$\mathrm{Cl}_{1}\left(T^{\prime}\right)$	1.30	$0 \cdot 14$	0.0164	0.0018	$5 \cdot 67$	$0 \cdot 27$	0.0718	0.0034
$\mathrm{Cl}_{3}(T)$	$1 \cdot 24$	$0 \cdot 14$	0.0157	0.0018	$4 \cdot 60$	$0 \cdot 22$	0.0582	$0 \cdot 0028$
$\mathrm{Cl}_{5}(T)$	1.90	$0 \cdot 14$	0.0240	0.0018	$7 \cdot 16$	$0 \cdot 29$	0.0906	$0 \cdot 0036$
$\mathrm{C}_{1}(T)$	$1 \cdot 32$	$0 \cdot 60$	0.0168	0.0075	$4 \cdot 0$	$0 \cdot 89$	0.051	0.011
$\mathrm{C}_{3}(T)$	1-62	$0 \cdot 56$	$0 \cdot 0205$	0.0070	$2 \cdot 7$	$0 \cdot 69$	0.034	$0 \cdot 009$
$\mathrm{C}_{5}(T)$	$1 \cdot 00$	$0 \cdot 60$	$0 \cdot 0127$	0.0075	$3 \cdot 7$	$0 \cdot 69$	$0 \cdot 047$	$0 \cdot 006$
$\mathrm{Cl}_{1}(N)$	1.60	$0 \cdot 64$	0.0203	0.0080	$4 \cdot 49$	$0 \cdot 76$	0.0568	0.0096
$\mathrm{Cl}_{3}(N)$	$1 \cdot 10$	$0 \cdot 65$	$0 \cdot 0139$	0.0081	$3 \cdot 51$	$0 \cdot 56$	$0 \cdot 0444$	$0 \cdot 0071$
$\mathrm{Cl}_{5}(N)$	$0 \cdot 50$	$0 \cdot 61$	$0 \cdot 0063$	$0 \cdot 0076$	$4 \cdot 88$	0.71	0.0618	$0 \cdot 0090$

Table 2
B_{x} values and corresponding $\overline{u_{x}^{2}} \sim B_{x} / 8 \pi^{2}$, for $1.3 .5 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}$ at $293{ }^{\circ} \mathrm{K}$. for (I) the last tested refinement, using James-Brindley f-curves: II recommended (full shift) but not tested for next round: (III) recommended when Thomas-Umeda (1957) f-curves

Atom and direction	$B_{x I}$	σ_{x}	$\overline{u_{x}^{2}}$	$\sigma\left(\overline{u_{x}^{2} \mathrm{I}}\right)$	$B_{x \text { II }}$	$\overline{u_{x}^{2} \Pi}$	$B_{x \text { III }}$	$u_{x}^{2} \mathrm{III}$
$\mathrm{Br}_{1}(R)$	$1 \cdot 80$	$0 \cdot 11$	0.0228	0.0014	$1 \cdot 71$	0.0217	1.97	0.0249
$\mathrm{Br}_{3}(R)$	1.76	$0 \cdot 11$	0.0223	0.0014	$1 \cdot 75$	0.0221	$2 \cdot 01$	0.0254
$\mathrm{Br}_{5}(R)$	$1 \cdot 45$	$0 \cdot 14$	0.0184	0.0018	$1 \cdot 21$	0.0153	1.51	0.0191
$\mathrm{Br}_{1}(T)$	$4 \cdot 20$	$0 \cdot 18$	0.0532	$0 \cdot 0023$	$4 \cdot 02$	0.0509	$4 \cdot 51$	$0 \cdot 0571$
$\mathrm{Br}_{3}(T)$	$3 \cdot 80$	$0 \cdot 17$	0.0481	0.0021	$3 \cdot 68$	0.0466	$4 \cdot 07$	0.0515
$\mathrm{Br}_{5}(T)$	$4 \cdot 20$	$0 \cdot 15$	0.0532	$0 \cdot 0019$	$4 \cdot 14$	0.0524	$4 \cdot 47$	$0 \cdot 0566$
$\mathrm{Br}_{1}(N)$	$4 \cdot 60$	$0 \cdot 49$	$0 \cdot 0582$	$0 \cdot 0062$	$4 \cdot 63$	0.0586	4.84	0.0613
$\mathrm{Br}_{3}(N)$	3.60 3.60	0.42 0.49	0.0456 0.0456	0.0053 0.0053	$4 \cdot 00$ $3 \cdot 83$	0.0506 0.0485	4.09 3.99	0.0518 0.0505
$\mathrm{Br}_{5}(N)$	$3 \cdot 60$	0.42	0.0456	$0 \cdot 0053$	$3 \cdot 83$	$0 \cdot 0485$	$3 \cdot 99$	$0 \cdot 0505$

to obtain a series of equations which express the observed mean-square amplitudes as a sum of rigid-body translational vibrations along $\mathbf{L}, \mathbf{M}, \mathbf{N}$; rigid-body librational vibrations about these axes; and independent atomic vibrations $\mathrm{Cl}_{1 R}, \mathrm{Cl}_{2 R}, \ldots, \mathrm{Cl}_{\mathrm{I} /}, \ldots$ etc., the latter implying distortions of the molecule. \mathbf{L}, \mathbf{N} are parallel to $X_{1}-X_{3}$, and normal to the molecular plane respectively; \mathbf{M} is normal to \mathbf{L}, \mathbf{N}. The librational movements being small, the corresponding atomic vibration amplitudes $p \varphi$ or $(p+q) \varphi \AA(\varphi$ in radians) are assumed to be tangential to the perpendicular from the atom on to the libration axis.

The appropriate set of equations, putting $\cos ^{2} 30=$ $0.75, \sin ^{2} \theta=0.25$, are

$$
\begin{array}{lr}
\overline{u^{2}}\left(X_{1}, R\right)=0 \cdot 75 t_{L}^{2}+0 \cdot 25 t_{M}^{2}+X_{1 R}^{2} \\
\overline{u^{2}}\left(X_{3}, R\right)=0 \cdot 75 t_{L}^{2}+0 \cdot 25 t_{M}^{2}+X_{3 R}^{2} \\
\overline{u^{2}}\left(X_{5}, R\right)= & t_{M}^{2}+X_{5 R}^{2} \\
\overline{u^{2}}\left(\mathrm{C}_{1}, R\right) & =0 \cdot 75 t_{L}^{2}+0 \cdot 25 t_{M}^{2}+\mathrm{C}_{1 R}^{2} \\
\overline{u_{2}}\left(\mathrm{C}_{3}, R\right) & =0 \cdot 75 t_{L}^{2}+0 \cdot 25 t_{M R}^{2}+\mathrm{C}_{3 R}^{2} \\
\overline{u^{2}}\left(\mathrm{C}_{5}, R\right) & = \tag{6}\\
t_{M}^{2}+\mathrm{C}_{5 R}^{2}
\end{array}
$$

$$
\begin{align*}
& \overline{u^{2}}\left(X_{1}, T\right)=0 \cdot 25 t_{L}^{2}+0 \cdot 75 t_{M}^{2}+(p+q)^{2} \varphi_{N}^{2}+X_{1 T}^{2} \tag{7}\\
& \overline{u^{2}}\left(X_{3}, T\right)=0 \cdot 25 t_{L}^{2}+0 \cdot 75 t_{M}^{2}+(p+q)^{2} \varphi_{N}^{2}+X_{3 T}^{2} \tag{8}\\
& \overline{u^{2}}\left(X_{5}, T\right)=t_{L}^{2} \quad+(p+q)^{2} \varphi_{N}^{2}+X_{5 T}^{2} \tag{9}\\
& \overline{u^{2}}\left(\mathrm{C}_{1}, T\right)=0 \cdot 25 t_{L}^{2}+0 \cdot 75 t_{M}^{2}+p^{2} \varphi_{N}^{2}+\mathrm{C}_{1 T}^{2} \tag{10}\\
& \overline{u^{2}}\left(\mathrm{C}_{3}, T\right)=0 \cdot 25 t_{L}^{2}+0 \cdot 75 t_{M}^{2}+p^{2} \varphi_{N}^{2}+\mathrm{C}_{3 T}^{2} \tag{11}\\
& \overline{u^{2}}\left(\mathrm{C}_{5}, T\right)=\quad t_{L}^{2} \quad+p^{2} \varphi_{N}^{2}+\mathrm{C}_{5 T}^{2} \tag{12}\\
& \overline{u^{2}}\left(\mathrm{Cl}_{1}, T\right)=t_{N}^{2}+(p+q)^{2}\left(0 \cdot 25 \varphi_{L}^{2}+0 \cdot 75 \varphi_{M}^{2}\right)+X_{1 .}^{2} \tag{13}\\
& \overline{u^{2}}\left(\mathrm{Cl}_{3}, N\right)=t_{N}^{2}+(p+q)^{2}\left(0 \cdot 25 \varphi_{L}^{2}+0 \cdot 75 \varphi_{M}^{2}\right)+X_{3,}^{2} \tag{14}\\
& \overline{u^{2}}\left(\mathrm{Cl}_{5}, N\right)=t_{N}^{2}+(p+q)^{2} \varphi_{L}^{2} \tag{15}\\
& +X_{5 .}^{2}
\end{align*}
$$

In these equations there are 15 observed meansquare amplitudes and 21 unknowns: t_{L}, t_{M}, t_{N}, $\varphi_{L}, \varphi_{M}, \varphi_{N}$, and $X_{1 R}, \ldots, X_{5 N}$. All the unknown (amplitude) ${ }^{2}$ are zero or positive; and within the standard deviations given it would not be possible to distinguish between $\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{5}$, at either temperature, nor between $X_{1 R}$ and $X_{3 R}$ for either Cl or Br . We may, in fact, (failing evidence to the contrary) assume that $\mathrm{Cl}_{1 R}, \mathrm{Cl}_{3 R}, \mathrm{Br}_{1 R}$ and $\mathrm{Br}_{3 R}$ are negligible. It is
reasonable to assume that $\mathrm{Cl}_{5 R}, \mathrm{Br}_{5 R}$ are also negligible. In that case we can determine $t \mathrm{~L}$ and t_{M} from equations (1), (2) and (3), and we obtain

	t_{L}^{2}	t_{M}^{2}	t_{L}	t_{M}
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$				
$90^{\circ} \mathrm{K}$.	0.0128	0.0053	$0.11_{5} \AA$	$0.07 \AA$
(σ)	(0.0016)	(0.0016)	-	-
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$				
$293{ }^{\circ} \mathrm{K}$.	0.0387	0.0263	0.19_{5}	0.16
(σ)	(0.0022)	(0.0024)	-	-
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}\left(290{ }^{\circ} \mathrm{K}.\right)$				
I	0.0240	0.0184	0.15_{5}	0.13
(σ)	(0.0016)	(0.0018)	-	-
II	0.0241	0.0153	0.15_{5}	0.12_{5}
III	0.0272	0.0191	0.16_{5}	0.14

According to Table $1, \overline{u^{2}}$ for $\mathrm{C}(R)$ are consistently higher than for $X(R)$, by amounts that are just outside the standard deviations. These differences imply that at $90^{\circ} \mathrm{K} ., C_{R}^{2}=0.0089$ and at $293{ }^{\circ} \mathrm{K} . C_{R}^{2}=0.0130$. They would be consistent with a 'breathing vibration' in the benzene ring of about $0 \cdot 1 \AA$ amplitude. They might alternatively be accounted for by a permanent distortion of the carbon-atom electron distribution due to the bonding with Cl . Or they may be due to an accumulation of experimental errors not taken account of in the standard deviations given. But in the latter case it is noteworthy that they occur at both temperatures.
Substituting the deduced values of t_{L}^{2}, t_{M}^{2} in equations (7), (8), (9) we obtain

	$(p+q)^{2} \varphi_{N}^{2}+X_{1 T}^{2}$	$(p+q)^{2} \varphi_{N}^{2}+X_{3 T}^{2}$	$(p+q)^{2} \varphi_{N}^{2}+X_{5 T}^{2}$
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$	0.0092	0.0085	0.0112
$90^{\circ} \mathrm{K}$.	0.009		
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$			0.0612
$293^{\circ} \mathrm{K}$.	0.0424	0.0288	
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}$			
$\left(293{ }^{\circ} \mathrm{K}.\right)$			
I	0.0334	0.0283	0.0292
II	0.0334	0.0291	0.0349
III	0.0360	0.0304	0.0294

The differences are within the limits of standard deviation at $90^{\circ} \mathrm{K}$., but are quite outside them for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$ at room temperature. For $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}$ they are doubtful, but they agree with $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$ in implying that any independent tangential movement of X_{3} must be small. If we assume $X_{3 T}=0$ then we have

	φ_{N}^{2}	φ_{N}
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$		
$\left(90{ }^{\circ} \mathrm{K}.\right)$	0.0009	$0.030\left(1.7^{\circ}\right)$
$\left(293{ }^{\circ} \mathrm{K}.\right)$	0.0030	$0.085\left(3.1^{\circ}\right)$
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}$		
I		
II	0.0027	$0.052\left(3.0^{\circ}\right)$
III	0.0027	$0.052\left(3.0^{\circ}\right)$
	0.0029	$0.054\left(3.1^{\circ}\right)$

This gives

$$
\mathrm{Cl}_{1}^{2}=0.0136 ; \quad \mathrm{C}_{1 T}=0 \cdot 11_{7} \AA,
$$

and

$$
\mathrm{C} 1_{5 T}^{2}=0.0324 ; \quad \mathrm{C}_{5 T}=0.18 \AA
$$

both at $293{ }^{\circ} \mathrm{K}$.
It does not seem possible to explain away these figures, which imply that the Cl_{1} and Cl_{5} atoms are vibrating tangentially relative to Cl_{3} and the benzene ring, in addition to their rigid-body librations with Cl_{3} and the benzene ring. Milledge \& Pant (1960) give intermolecular distances which show that Cl_{1} has nearest neighbours at $3 \cdot 63,3.75,4 \cdot 04 \AA, \ldots, \mathrm{Cl}_{3}$ at $3 \cdot 75,4 \cdot 13,4 \cdot 15 \AA, \ldots, \mathrm{Cl}_{5}$ at $3 \cdot 63,3 \cdot 65,3 \cdot 65,4 \cdot 04 \AA, \ldots$. It seems, therefore, that the Cl atom most strongly linked to its neighbours (Cl_{5}) is vibrating most strongly and that one $\left(\mathrm{Cl}_{3}\right)$ most weakly bound is vibrating only weakly or not at all, independently of its rigid-body movements.
The differences between the $\mathrm{Cl}_{3}(T)$ and $\mathrm{C}(T)$ values of $\overline{u^{2}}$ arc not large enough to have any significance in terms of independent tangential movements of the carbon atoms.
Nor would it be wise, in view of the large standard deviations, to draw any conclusions from the $\mathrm{Cl}(N)$ data except to deduce tentative values of $t_{N}, \varphi_{L}, \varphi_{M}$. They obviously have upper limits, given by the minimum values of $\overline{u^{2}}(N)$. In fact since from equation (14) we have $(p+q)^{2} \quad\left(0.25 \varphi_{L}^{2}+0.75 \varphi_{M H}^{2}\right)<0.0444$ it follows that the upper limits of φ_{L}, φ_{M} are <0.007 for $t_{N}=0$. Since the expansion coefficient of $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$ is very large along [001] (Milledge \& Pant (1960) give $\alpha(a)=58, \alpha(b)=46, \alpha(c)=109$, all $\times 10^{-6} /{ }^{\circ} \mathrm{K}$. over the range $90-293{ }^{\circ} \mathrm{K}$.) it seems likely that φ_{L}, φ_{M} are of the same order as the values found for anthracene (Lonsdale, Mason \& Milledge, in preparation) where much more precise experimental data permit a more exact determination. That is, they must be about $0.04-0.06$ radians at $293{ }^{\circ} \mathrm{K}$. Only φ_{L}, φ_{M} librations (which are the ones to produce out-of-plane movements) can be responsible for the large anisotropy of expansion, since t_{N} is limited to values of the same order as t_{L} and t_{M}, and translational vibrations will in any case mainly be acoustic vibrations from which, since neighbouring molecules move together, only small expansion effects result.
Acceptance of the lower limit of $\varphi_{L}, \varphi_{M}=0.04$ radians would give $t_{N}^{2} \leq(0.0444-0.0154)$ for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$ at $293{ }^{\circ} \mathrm{K}$. Hence $t_{N} \leq 0.17 \AA$, a value comparable with t_{L}, t_{M}. There is no marked difference in this \mathbf{N} direction between $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$ and $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}$. We can definitely say, therefore, that $\varphi_{L}, \varphi_{M}, \varphi_{N}$ are of similar orders of magnitude, 0.05 radians, and produce atomic movements $(p+q) \varphi=0 \cdot 18 \AA$, which are about equal to the translational amplitudes t_{L}, t_{M}, t_{N}.

The calculations of atomic co-ordinates and B factors basic to this paper were carried out with the help of a grant for computing made from the Wellcome Trust, and with the use of tape-editing equipment purchased by means of a grant from the London

University Central Fund. Our thanks are also due to Messrs. Babcock and Wilcox Ltd. for enabling us to use their Ferranti Pegasus computer.

References

Coursen, D. L. \& Hoard, J. L. (1952). J. Amer. Chem. Soc. 74, 1742.
Higas, P. W. (1955). Acta Cryst. 8, 99.
Lonsdale, K. (1959). Nature, Lond. 184, 1060.

Lonsdale, K., Mason, R. \& Milledge, H. J. (In preparation.)
Lonsdale, K. \& Milledge, H. J. (1959). Nature, Lond. 184, 1545.
Lonsdale, K., Milledge, H. J. \& Rao, K. V. K. (1960). Proc. Roy. Soc. (In press.)
Lonsdale, K. \& Toor, E. W. (1959). Acta Cryst. 12, 1048.

Milledge, H. J. \& Pant, L. M. (1960). Acta Cryst. 13, 285.

Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 500 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible; and proofs will not generally be submitted to authors. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1960). 13, 502
The crystal structure of $\mathbf{R b}_{\mathbf{2}} \mathbf{T h F}_{\mathbf{6}}$. By L. A. Harris, Metallurgy Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

(Received 26 December 1959)

A preliminary survey of the system $\mathrm{RbF}-\mathrm{ThF}_{4}$ (Thoma, 1957) revealed the existence of a compound with the formula $\mathrm{Rb}_{2} \mathrm{ThF}_{6}$. Examination of the compound by means of the polarizing microscope showed it to be uniaxial positive with indices of refraction

$$
\mathrm{N}_{E}=1.494 \pm 0.003 \text { and } \mathrm{N}_{O}=1.472 \pm 0.003
$$

(Landau, 1957). Optical investigations of materials of the above composition quenched from the temperature range $800^{\circ} \mathrm{C}$. to $400^{\circ} \mathrm{C}$. exhibited no phase changes and constant optical properties.

Debye-Scherrer diffraction films were taken of powdered samples using a 114.6 mm .diag. cylindrical camera and $\mathrm{Cu} K \alpha(\lambda=1.5418 \AA)$ radiation. The data thus obtained were indexed and found to best fit a hexagonal cell whose lattice parameters are $a_{0}=6.85 \pm 0.020 \AA$ and $c_{0}=3.83 \pm 0.020 \AA$. The density was pycnometrically measured as $5.45 \mathrm{~g} . \mathrm{cm} .^{-3}$ which may be compared with an X-ray density of 5.56 g.cm. ${ }^{-3}$ calculated with one molecule of $\mathrm{Rb}_{2} \mathrm{ThF}_{6}$ per unit cell. No systematic absences of reflections were observed from the powder X-ray diffraction data.

The lattice dimensions, crystal symmetry, and diffracted X-ray intensity distribution of $\mathrm{Rb}_{2} \mathrm{ThF}_{6}$ indicate a close structural relationship with $\beta_{1}-\mathrm{K}_{2} \mathrm{ThF}_{6}$ (Zachariasen, 1948). Presuming these two compounds to be isostructural, the atoms were placed in those positions deduced by Zachariasen in accordance with the space group $C \overline{6} 2 m$, namely,

```
2 Rb in (\frac{1}{3},\frac{2}{3},\frac{1}{2});(\frac{2}{3},\frac{1}{3},\frac{1}{2}).
1 Th in (0,0,0).
3F in (x,0,0); (0, x, 0); (\overline{x},\overline{x},0) where x=0.640.
3 F in (x,0,\frac{1}{2});(\overline{x},\overline{x},\frac{1}{2});(0,x,\frac{1}{2})\mathrm{ where }x=0.220.
```

Table 1 shows the satisfactory agreement of observed and calculated intensities, the latter calculated from the formula

$$
I \propto|F|^{2} \cdot p \cdot\left(1+\cos ^{2} \theta\right) / \sin ^{2} \theta \cos \theta,
$$

Table 1. Comparison of observed and calculated intensities for $\mathrm{Rb}_{2} \mathrm{ThF}_{6}$
\(\left.\begin{array}{cccc} \& \& \& I (calc.)

h k \cdot l \& d(\AA) \& I (obs.)* \& \times 10^{-5}\end{array}\right]\)| 18 |
| :--- |
| $10 \cdot 0$ |

* Peak intensities observed from an X-ray diffractometer tracing of a sample prepared by the method of McCreery (1949).
where F is the structure amplitude, and p is the multiplicity factor.

The writer wishes to express his thanks to H. L. Yakel, Jr., who read the manuscript and gave helpful suggestions.

References

Thoma, R. E. (1957). (Private communication.) Landau, B. S. (1957). (Private communication.) Zachariasen, W. H. (1948). Acta Cryst. 1, 265.
McCreery, G. L. (1949). J. Amer. Ceram. Soc. 32, 141.

